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Základné pojmy

π ... priemetňa (nákresňa)

S ... stred premietania

SA ... premietací lúč

... priemet bodu A

... priemet krivky k

premietací útvar krivky k 
... množina všetkých 

premietacích lúčov

ZOBRAZENIE PRIESTORU NA ROVINU

Zobrazovanie priestorového útvaru do roviny = premietanie

Základné vlastnosti premietania
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Rozdelenie premietania

a) Stredové (centrálne) - S vlastný bod 

� Lineárna perspektíva

b) Rovnobežné (paralelné) – S nevlastný bod

� kolmé (ortogonálne), napr.

ϕ=90°

▫ Mongeova projekcia

▫ kótované premietanie

▫ axonometria

Podľa uhla ϕ, ktorý zvierajú premietacie lúče s priemetňou :

� šikmé (klinogonálne), napr.

0°<ϕ<90°

▫ šikmá axonometria



Pravouhlá (karteziánska) súradnicová sústava

π ... prvá priemetňa – pôdorysňa

ν ... druhá priemetňa – nárysňa

µ ... tretia priemetňa – bokorysňa

O ... začiatok súradnicovej

sústavy 

x, y, z ... súradnicové osi

xA, yA , zA ... súradnice bodu A

... súradnicový kváder
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Orientácia súradnicovej sústavy

pravotočivá ľavotočivá



ROVNOBEŽNÉ PREMIETANIE
MOMGEOVA PROJEKCIA

π ... prvá priemetňa – pôdorysňa

ν ... druhá priemetňa – nárysňa

x ... základnica

1. priemet (pôdorys)

2. priemet (nárys)

združené
priemety 
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π  

ν 

x 

pôdorys - pohľad zhora

nárys - pohľad spredu



Zobrazenie súradnicovej sústavy
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O1,2=y2=z1 
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Zobrazenie bodu
( )AAA z;y;xA

( )21 A;A ... združené priemety bodu A
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Zobrazenie priamky
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P ... pôdorysný stopník

N ... nárysný stopník
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premietacie roviny priamky



 

b1 

b2 

N1 

N2 

P2 

P1 

c2 

c1 f1 

f2 

P2 

d1=P1 

d2 

e2=N2 

N1 

e1 

Špeciálne polohy priamky
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Sklopenie priamky 
do pôdorysne 
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Postup

1.

2.

3.

4.  α ... odchýlka priamky od π

5.         ... veľkosť úsečky AB

( ) ( ) ( ) A111 zAAaAA:A =∧⊥
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( ) ( )( )BAa =

( )( )BA

 

α 
α 

π  
P=P1=(P) 

a 

a1 

κ 
B1 

A 

B 

A1 

(A) 
(B) 

zA 

zA 

C 

(C) 

(a) 



Dve priamky

a ll b c d k     l
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Zobrazenie roviny
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Priamka v rovine
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Hlavné priamky roviny
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... hlavná priamka 2. osnovy rovnobežná s ν
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Spádové priamky roviny
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Odchýlka spádovej priamky = odchýlka roviny od priemetne



3.             

4.

5.                    

6.

7.

Otočenie roviny do pôdorysne
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Otočenie roviny kolmej na nárysňu do pôdorysne
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Úloha: Zistite skutočnú veľkosť a tvar trojuholníka ABC ležiaceho v 
rovine ρ kolmej na nárysňu. 
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Úloha: Zistite skutočnú veľkosť a tvar trojuholníka ABC ležiaceho 
vo všeobecnej rovine ρ
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