
DESKRIPTÍVNA GEOMETRIA

� metódy zobrazovania priestorových útvarov do 
roviny (premietania)

� metrické a polohové vzťahy priestorových 
útvarov riešené v rovine



Obsah predmetu DG

Zobrazovacie metódy:

� Mongeova projekcia

� Axonometria

� Stredové premietanie
▫ Lineárna perspektíva

Polohové a metrické úlohy:

� Rezy základných telies

� Plochy
▫ rotačné

▫ priamkové

▫ skrutkové



Vyučujúca:

RNDr. Eva Stanová, PhD.
ÚTEMS SvF, KAM, Vysokoškolská 4, č.d. 462

Podmienky úspešného ukončenia predmetu:

� zápočet 16 - 30 bodov: - písomná práca 20 bodov
- grafická práca 10 bodov

� skúška formou testu max 70 bodov

Potrebnézískať spolu (z+s)minimálne 51bodov



Prednáška 1

Obsah

� Rozšírený euklidovský priestor

� Ohniskové vlastnosti kužeľosečiek

� Rozdelenie 

� Definícia

� Bodová konštrukcia

� Dotyčnica ku kužeľosečke

� Hyperoskulačné kružnice kužeľosečky



ROZŠÍRENÝ EUKLIDOVSKÝ PRIESTOR

2. Rozšírený euklidovský priestor
Základné prvky + nevlastné prvky

nevlastný bod                 nevlastná priamka

1. Euklidovský priestor
Základné prvky : bod
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OHNISKOVÉ VLASTNOSTI KUŽE ĽOSEČIEK

Definícia
Kužeľosečky sú rovinné krivky druhého stupňa, ktoré vznikajú rezom 
rotačného kužeľa nevrcholovou rovinou.

Druhy
� kružnica
� elipsa
� hyperbola
� parabola



AB - hlavná os

CD - vedľajšia os       

- sprievodiče bodu M

- veľkosť hlavnej polosi

- veľkosť vedľajšej polosi

- excentricita 

(ohnisková výstrednosť)

Platí:
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Elipsa
Definícia
Elipsa je množina všetkých bodov v rovine, ktoré majú od dvoch rôznych 
bodov       ,       tejto roviny stály súčet vzdialeností > . 



Bodová konštrukcia elipsy

Dané: AB ... hlavná os 
e ... excentricita

Zostrojte: body elipsy
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Hyperoskulačné kružnice

- kružnice vo vrcholoch elipsy, ktorých krivosť je rovná krivosti 
krivky v spoločnom bode

Postup
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Postup

1.    , ...sprievodiče bodu T

2.

Dotyčnica k elipse
a) v bode T elipsy

s2

Platí:

Dotyčnica v bode kužeľosečky rozpoľuje vonkajší uhol sprievodičov
dotykového bodu.
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Úloha 1: V bode T elipsy zostrojte dotyčnicu t.
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Body Q, P
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... symetrický s ohniskom       podľa dotyčnice t

... päta kolmice z ohniska na dotyčnicu
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Platí:

�Množina bodov Q, symetrických s jedným ohniskom (    resp.    ) 
elipsy podľa všetkých jej dotyčníc, je kružnica so stredom v druhom 
ohnisku (    resp.    ) a polomerom 2a. 

�Množina piat P kolmíc, zostrojených z ohniska     (resp.    ) na 
všetky dotyčnice elipsy, je kružnica so stredom v bode S a 
polomerom a. 
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Úloha 2: Elipsa je určená hlavnou osou AB a excentricitou e. Daný je 
vonkajší bod V elipsy. Zostrojte z bodu V dotyčnice      ,      
k elipse s dotykovými bodmi     ,     .
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b) Dotyčnica z vonkajšieho bodu V k elipse



S      - stred

A, B - hlavné (reálne) vrcholy

C, D - vedľajšie (imaginárne) vrcholy

,     - ohniská

AB - hlavná (reálna) os

CD - vedľajšia (imaginárna) os       

- sprievodiče bodu M

- veľkosť hlavnej polosi

- veľkosť vedľajšej polosi

- excentricita 

(ohnisková výstrednosť)

Hyperbola
Definícia
Hyperbola je množina všetkých bodov v rovine, ktoré majú od dvoch 
rôznych bodov       ,       tejto roviny konštantný rozdiel vzdialeností
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Bodová konštrukcia hyperboly

Dané: AB ... hlavná os 
e ... excentricita

Zostrojte: body hyperboly
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Asymptoty
- dotyčnice v nevlastných bodoch hyperboly
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Postup

1. obdĺžnik KLMN - asymptotický

2. uhlopriečky x, y - asymptoty



Hyperoskulačné kružnice
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Postup

1. asymptotický obdĺžnik

2. asymptoty

3. z K kolmica na asymptotu→

4. z L kolmica na asymptotu→
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Parabola
Definícia
Parabola je množina všetkých bodov v rovine, ktoré majú rovnakú
vzdialenosť od danej priamky d a daného bodu          tejto roviny.dF ∉
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Bodová konštrukcia paraboly

Dané: d ... určujúca priamka 
F ... ohnisko

Zostrojte: body paraboly

F  

d  

F  

d  

H  
o  

2

p  

A  F  

d  

H  

2

p  
o  

A  

2

p  

F  K  

d  

H  

2

p  
o  

A  

M1  

2

p  

F  K  

m  

d  

k  

H  

M2  

2

p  
o  

A  

M1  

2

p  

F  K  

m  

d  

k  

H  

M2  

2

p  
o  

Postup

1. os o bodom F kolmo na d

2. A ... stred úsečky HF

3. K ... zvolíme

4. m |||||||| d bodom K
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Hyperoskulačná kružnica

Platí: Polomer hyperoskulačnej kružnice sa rovná parametru paraboly.


